Skip to main content

Analyzing traffic speeds from 100 billion drive records

· 4 min read
Christopher Kyed
Data Scientist @ Pacific Spatial

Over the last few decades, it has become increasingly evident that passenger vehicles are by far the most dangerous way to travel. As a result, it has become more and more important to find an efficient and effective method to predict traffic risk. However, predicting traffic accidents and where they are likely to occur is a very complex problem, with large amounts of data being needed for most meaningful predictions.

At Pacific Spatial Solutions, we are currently trying to tackle this problem by training a machine learning model to predict road and intersection risk in Japan nationwide. As we are trying to predict traffic risk on a national level it is only natural that the data we use cover the same area.

Creating cloud-free composite HLS imagery with Fused

· 4 min read
Marie Hoeger
Staff Software Engineer @ Pachama
Plinio Guzman
Founding Engineer @ Fused

High-quality satellite imagery is essential to assess the carbon impact of nature-based forest conservation and restoration projects [1]. However, getting that high quality imagery is uniquely difficult in areas that need carbon financing the most: tropical forests. Tropical forests present a unique challenge for satellite imagery analysis due to persistent cloud cover, which often renders optical imagery unusable and creates data gaps.

File

Example composites highlight how the HLS-L30 product alone can have gaps when attempting to make a seasonal composite, as fewer cloud-free observations.

The Strength in Weak Data: Part 1

· 2 min read
Kristin Scholten
Data Scientist @ Nationwide

Ever tried to make sense of the myriad file types in spatial data science and felt like you've wandered into a linguistic labyrinth? Trust me, you're not alone. As a data scientist who's spent more time wrangling datasets than I care to admit, I thought I'd take a casual stroll down memory lane with an old high school friend: regression models. Just a simple plot of actual vs. predicted, right? But when spatial data's involved, you can't just sit back and relax—you've got to keep one eye on the geometries.

I'm currently working on an agricultural project, and growing up on a farm gives me a personal stake in this. This blog illustrates my solution to the geometry debacle. I'll first take you to the area where I grew up: Lyon County.

Enrich your dataset with GERS and create a Tile server

· 3 min read
Jennings Anderson
Software Engineer @ Meta
Plinio Guzman
Founding Engineer @ Fused

Overture is an open data project that publishes interoperable map datasets. It aims to foster an ecosystem of developers creating downstream map services around its data products. Fused emerged as a solution to enrich Overture datasets on the fly and serve them with XYZ Tile endpoints.

This clip shows how coverage expands in (top right) Astoria when I add building heights from the NSI dataset (as num_story * 3) to Overture buildings.

Six ways to use Fused

· 4 min read
Daniel Jahn
Platform Engineer @ Sylvera

Fused is a powerful and versatile tool that can do nearly anything with just Python. Its versatility is its strength, but it is also an obstacle. It's easy to walk about wondering: what, concretely, can Fused do for me?

Here are six concrete ways you can use Fused today.

Summarizing building energy ratings

· One min read
Isaac Brodsky
CTO @ Fused

In this video tutorial, I show a complete data app workflow in Fused. Starting with exploring the data in Fused, the tutorial walks through developing a UDF to serve the data, and then a Fused App to share results.

With Fused, this whole workflow takes just minutes from beginning to end. Fused helps me visualize the data at every step, iterate on my analytical logic, and finally publish a dashboard.

ML-less global vegetation segmentation at scale

· 4 min read
Kevin Lacaille
Senior Software Engineer @ Spexi

In an era where data-driven decisions are vital, accurate and scalable vegetation analysis plays a crucial role across various industries, from environmental monitoring to urban planning. While AI and machine learning have transformed image analysis, they often bring complexities and resource demands that aren't always practical for large-scale, real-time applications.

How Pachama creates maps on-the-fly with Fused

· 4 min read
Andrew Campbell
Senior Software Engineer @ Pachama
Plinio Guzman
Founding Engineer @ Fused

Pachama is a technology company that harnesses satellite data and AI to empower companies to confidently invest in nature. The engineering team at Pachama created a Land Suitability Tool to help landowners and project developers qualify parcels of land to implement carbon projects. They turned to Fused to simplify their data workflows.

Geospatial workflows of any size

· One min read
Isaac Brodsky
CTO @ Fused
Matt Forrest
Field CTO @ CARTO

Isaac Brodsky, the CTO of Fused, delved into the power of Fused during a LinkedIn live session with Matt Forrest. They discussed the contrast of Python vs. SQL for data analytics, the advantages of serverless geospatial processing, and showcased a live demo of the UDF Builder. During the demo, Isaac created a User Defined Function visualize Overture building footprints that are within a certain proximity of water.

DuckDB + Fused: Fly beyond the serverless horizon

· 6 min read
Sina Kashuk
CEO @ Fused
Isaac Brodsky
CTO @ Fused
File

The combination of Fused serverless operations and DuckDB offers blazing fast data processing. Fused embraced Python to create serverless User Defined Functions (UDFs). Now, with the help of DuckDB, Fused enables developers to leverage the ease and familiarity of SQL in these functions  -  without compromising performance and parallelism.